Single-Molecule Fluorescence for the Study of GPCRs – Conformational Dynamics

A review, by Professors Quast and Margeat from the French National Centre for Scientific Research exploring, has addressed G protein-coupled receptor (GPCR) structural dynamics and the role of single-molecule fluorescence SMF methods in their interrogation.

GPCRImage Credit: ibreakstock / Shutterstock.com

The team focuses on single-molecule Förster resonance energy transfer (smFRET) in particular, which enables distances and, therefore, conformational changes to be measured across the timescales over which protein conformational movements occur. Most notably, biological insights into the activation and signaling for β2 adrenergic and the metabotropic glutamate receptors are unearthed.  

G protein-coupled receptors (GPCRs) are highly physiologically relevant, and as such, are targets of pharmacological manipulation. Insights into their structural flexibility reveal the role of ligand-based activation.

Previous implications of this structural flexibility in physiology and pharmacology remain unexplored; this is particularly important, considering its potential in receptor fine-tuning and signal transduction specificity. Single-molecule fluorescence (SMF) offers a real-time, minimally structural invasive means of monitoring structural dynamics in the context of biological environments.

The timescales of protein fluctuations are capable of being measured at the single-molecule level. Fluorescent probes are excellent reporters of these conformational changes and can be used in living cells.

Using an ideal model, two states, separated by an energy barrier, are differentiated from one another either by plotting fluctuations (movements) in the fluorescently tagged protein area as a function of time or the plotting the distribution of the states. Through analyzing the dwell times (static periods, over which there are no movements), the tagged area spends in each of the states enables the rate of transition between each state to be determined.

However, molecular motions in proteins often occur faster than the time resolution of a single molecule fluorescence experiment, resulting in averaged conformations that prevent the dissolution of defined states.

Single molecules are observed by total internal reflection (TIRF), where changes in fluorescence properties per molecule as a function of time can be seen. Alternatively, diffusion-based measurements are used for fast protein dynamics as it offers excellent time resolution

Quast & Margeat, in their review, report the findings of the intracellular domain motions observed in class A GPCRs, and opening and closing and reorientation movements associated with the activation of the class C GPCR extracellular domain. These are all based on single-molecule fluorescence (SMF).

Several studies deducing the complex conformational landscape of the β2AR at the single-molecule level have been determined. They have also determined the effect of agonist binding on the dwell times of conformational states over milliseconds to seconds. The stabilization of agonist binding has pointed at the instability of the fully activated conformational state, which has been verified by other structural means.

Other receptor conformations have been subsequently determined. In particular, TMs 4 and 6 are known to undergo dynamic changes in motion upon ligand binding in a manner that depends on the ligand identity; they drive the efficacy of shifts in the rate at which the ligand-bound G protein-receptor complex is formed and also the efficiency of nucleotide exchange.

This latter finding represented a benchmark in the understanding of GPCR conformational dynamics; however, the authors note that complementary studies at higher time resolution are required for rates of interconversion between conformational states to be determined.

The authors also note research which labels GPCRs at alternative positions to determine concerted structural changes between the receptor and transducer. Namely, selective modification of amino acids: platelet-activating factor receptors (PAFRs), labeled on specifically incorporated azido-lyzines (AzK).

Single-molecule studies have also been used in the study of the extracellular domain (ECD) of class C GPCRs. Crystal structures of isolated ECDs from the mGluR2 using robust and highly specific labeling strategies (SNAP, HALO, and CLIP tags N-terminally fused to the receptors) have enabled elucidation of agonist-induced ECD dimer reorientation.

A pioneering study by Olofsson et al. revealed submillisecond structural dynamics of isolated mGluR2 extracellular domain dimers observed in freely diffusing molecules, showing the presence of two rapidly interchanging states. The same holds for members of all mGluR subgroups, which evidenced a general activation mechanism conserved across all mGluR subtypes.

A final study the authors note is by Vafabakhsh et al., who determined the conformational dynamics on surface-immobilized full-length mGluR2 using smFRET. These experiments were performed at a much slower time resolution and revealed a novel intermediate FRET population which led the researchers to conclude that the resting and active ligand-binding domain (LBD) may be stabilized by the TMD of the full-length receptors.

The β2AR and the mGluR receptors have been studied in-depth by single-molecule fluorescence studies, and as such, represent prototypical models for the class-A and class-C GPCRs. Altogether, the SMF observations on these receptors demonstrate the high degree of conformational flexibility within the receptor.

Most interestingly, partial agonists have been shown to work as poorly efficient modifiers of the conformational ensemble as opposed to stabilizers of distinct, partially active states.  Quast and Margeat suggest that the future direction of SMF studies should be extended to verify if these same observations hold for other GPCRs.

Following this, SMF is hoped to be used to determine interactions with other partners. This will be useful in understanding ‘biased agonism’ – whereby pharmacological effects of ligands are determined by their ability to favor certain conformational states, leading to differential activity with their partners.

As technology develops, the ability to use non-invasively labels at potentially any desired position within the receptors and its ligands will enable experimental fine-tuning for further probing of conformational change with accuracy.

Finally, the authors predict smFRET experimentation in liposomes, nanodisks, and eventually, live cells will be common, owing to the effect that the membrane environment has on the conformational transitions.

Acknowledgments

The research is supported by a grant from the Agence Nationale pour la Recherche (ANR-12-BSV2-0015). The laboratory belongs to the France-BioImaging national infrastructure supported by the Agence Nationale pour la Recherche (ANR-10-INBS-04, “Investments for the future”

References

Olofsson, L. et al. Fine tuning of sub-millisecond conformational dynamics controls metabotropic glutamate receptors agonist efficacy. Nat. Commun. doi: https://doi.org/10.1038/ncomms6206 (2014).

Vafabakhsh, R. et al. Conformational dynamics of a class C G-protein-coupled receptor. Nature. doi:

https://doi.org/10.1038/nature14679 (2015)              

Gregorio, G. et al. Single-molecule analysis of ligand efficacy in β2AR–G-protein activation. Nature. doi: https://doi.org/10.1038/nature22354 (2017)

Quast, R. B. & Margeat, E. Studying GPCR conformational dynamics by single molecule fluorescence. Molecular and Cellular Endocrinology. doi: https://doi.org/10.1016/j.mce.2019.110469 (2019)

 

Further Reading

Last Updated: Dec 2, 2019

Hidaya Aliouche

Written by

Hidaya Aliouche

Hidaya is a science communications enthusiast who has recently graduated and is embarking on a career in the science and medical copywriting. She has a B.Sc. in Biochemistry from The University of Manchester. She is passionate about writing and is particularly interested in microbiology, immunology, and biochemistry.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Aliouche, Hidaya. (2019, December 02). Single-Molecule Fluorescence for the Study of GPCRs – Conformational Dynamics. News-Medical. Retrieved on November 11, 2024 from https://www.news-medical.net/life-sciences/Single-Molecule-Fluorescence-for-the-GPCR-Study-Conformational-Dynamics.aspx.

  • MLA

    Aliouche, Hidaya. "Single-Molecule Fluorescence for the Study of GPCRs – Conformational Dynamics". News-Medical. 11 November 2024. <https://www.news-medical.net/life-sciences/Single-Molecule-Fluorescence-for-the-GPCR-Study-Conformational-Dynamics.aspx>.

  • Chicago

    Aliouche, Hidaya. "Single-Molecule Fluorescence for the Study of GPCRs – Conformational Dynamics". News-Medical. https://www.news-medical.net/life-sciences/Single-Molecule-Fluorescence-for-the-GPCR-Study-Conformational-Dynamics.aspx. (accessed November 11, 2024).

  • Harvard

    Aliouche, Hidaya. 2019. Single-Molecule Fluorescence for the Study of GPCRs – Conformational Dynamics. News-Medical, viewed 11 November 2024, https://www.news-medical.net/life-sciences/Single-Molecule-Fluorescence-for-the-GPCR-Study-Conformational-Dynamics.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.