Monodisperse Gold Nanoparticles

Monodispersity refers to the range and variety of dimensions of nanoparticles present in a colloid. A monodisperse sample of gold nanoparticles with a radius of 5 nm will contain very few nanoparticles of any other radius, while a sample containing a wide range of sizes is said to be polydisperse.

By Angel Soler Gollone

Angel Soler Gollone | Shutterstock

Obtaining monodisperse gold nanoparticles is essential for almost all intended applications, as important properties such as catalytic activity, surface area, or surface plasmon resonance wavelength are all affected by the size and shape of the nanoparticle.

When investigating the role of gold nanoparticles, polydispersity makes correlating function and activity of nanoparticles difficult.

Most methods for producing gold nanoparticles aim to produce nanoparticles of even size and shape, with publications constantly introducing new  methods or proposing minor improvements over existing methods.

Post-synthesis techniques, such as centrifugation are used to improve the monodispersity of a sample, or separate the range of shapes and sizes in a sample from one another.

Achieving monodispersity

Gold nanoparticle production can be achieved from both a ‘top-down’ and ‘bottom-up’ approach, that is, beginning from either bulk metal or molecular gold.

Bottom-up approaches tend to produce superior nanoparticles in terms of monodispersity and are more commonly employed to produce functional gold nanoparticles with an application in mind.

During the bottom-up gold nanoparticle formation, ionic gold is reduced to metallic gold in solution, forming small clusters of gold atoms. These clusters act as ‘seeds’, providing a surface on which additional gold ions are reduced to their metallic state. The nanoparticle continues to grow evenly in all directions (isotropic), until the available gold in solution has been used up.

The strength of the reducing agent determines the final size and number of particles, as a stronger reducing agent generates a greater number of seeds, meaning that the gold in solution must spread over a greater surface area and generate smaller particles.  

Therefore, the initial quantities of gold and reducing agent(s) reacted must be carefully considered when aiming to produce a particular size of nanoparticle, while the growth conditions must be carefully controlled and maintained to achieve monodispersity. The reaction solution is usually stirred vigorously to ensure homogeneity, while every effort is made to heat the reaction vessel as evenly as possible.

Separation and characterization techniques

Centrifugation

Centrifugation is commonly used to wash away excess reactants or other waste from a colloidal solution of gold nanoparticles. Being much heavier than surrounding small molecules, gold nanoparticles quickly sink to the bottom of a centrifuge tube forming a pellet, and can be resuspended in the solvent of choice.

This phenomenon can be used to separate particles based on size, as larger particles will form a pellet more quickly than small particles.

Filtration techniques

Other techniques such as size exclusion chromatography, diafiltration, or dialysis can be used to separate a mixture of gold nanoparticles based on size, shape, and surface charge.

Various analytical techniques can be used to check for monodispersity in a sample, with differing levels of detail. For example, transmission electron microscopy direct photographs small number of nanoparticles, allowing for detailed information regarding the size and shape of the nanoparticles to be gained at the cost of basing data on a relatively small sample size.

Differential centrifugal sedimentation and nanoparticle tracking analysis both determine the diameter of a far larger number of particles with excellent resolution, though details, such as the exact shape of the particle are lost.

Further Reading

Last Updated: Nov 23, 2018

Michael Greenwood

Written by

Michael Greenwood

Michael graduated from the University of Salford with a Ph.D. in Biochemistry in 2023, and has keen research interests towards nanotechnology and its application to biological systems. Michael has written on a wide range of science communication and news topics within the life sciences and related fields since 2019, and engages extensively with current developments in journal publications.  

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Greenwood, Michael. (2018, November 23). Monodisperse Gold Nanoparticles. News-Medical. Retrieved on November 11, 2024 from https://www.news-medical.net/life-sciences/Monodisperse-Gold-Nanoparticles.aspx.

  • MLA

    Greenwood, Michael. "Monodisperse Gold Nanoparticles". News-Medical. 11 November 2024. <https://www.news-medical.net/life-sciences/Monodisperse-Gold-Nanoparticles.aspx>.

  • Chicago

    Greenwood, Michael. "Monodisperse Gold Nanoparticles". News-Medical. https://www.news-medical.net/life-sciences/Monodisperse-Gold-Nanoparticles.aspx. (accessed November 11, 2024).

  • Harvard

    Greenwood, Michael. 2018. Monodisperse Gold Nanoparticles. News-Medical, viewed 11 November 2024, https://www.news-medical.net/life-sciences/Monodisperse-Gold-Nanoparticles.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers demonstrate a new method to combat pancreatic cancer