Micro-MRI in Cancer Research

Magnetic resonance imaging (MRI) generates images based on the nuclear magnetic behavior of atoms in a sample in a magnetic field. It is a non-invasive imaging tool that offers 3D tissue images without using radiation. It can be used to acquire high-resolution cellular and molecular images of small animals used in life science or biomedical research.

©JLRphotography / Shutterstock.com

Micro-MRI is used in various applications including functional, anatomical, and molecular imaging of small animals. It can help distinguish between white and grey matter in the brain and is hence useful in brain tumor diagnosis.

Cancer drug discovery

Micro-MRI is a versatile imaging modality used in preclinical drug discovery for cancer. It is used in studies that focus on tumor physiology and volume in small animals. Micro-MRI provides images with excellent soft tissue contrast and spatial resolution of nearly 50 μm3. It has the ability to combine functional and anatomical information, which offers valuable insights into tumor formation and progression. Recently, the use of high-strength magnetic fields and contrast agents that enhance visualization have improved the sensitivity of micro-MRI imaging methods. However, relatively low sensitivity and long image acquisition times limit the use of micro-MRI in preclinical drug development efforts.

Suicide gene therapy

This form of therapy involves the insertion of a gene (viral or bacterial) into a tumor cell, which results in the formation of a compound deemed lethal for the cell. Micro-MRI has been successfully applied to study the effectiveness of suicide gene therapy in delaying the growth of tumor in mice with orthotopic glioma. Researchers have also used this technique in mice with prostate cancer to establish infiltration of injected gene therapies. Micro-MRI has also been used in drug delivery and efficacy monitoring.

Hyperpolarized probes

The use of hyperpolarized MRI probes has revolutionized preclinical molecular imaging in small animals. These probes are attached to biomolecules and can be visualized in tumors and organs such as the brain, kidney, liver, and heart. This procedure is used to acquire metabolic and functional information. For instance, hyperpolarized [1-13C]pyruvate has been used to quantify anaerobic glycolysis related to brain gliomas.

Dynamic contrast-enhanced (DCE) - MRI

DCE-MRI is used to study the anatomy and function of the microvasculature of a tumor and provides dynamic information including blood flow. It is highly useful in studying tumor angiogenesis, and can even assist in the investigation of vascular-disrupting and anti-angiogenic therapeutics. Recently, DCE-MRI was used to establish that co-treatment with a TGFβ-receptor-1 inhibitor and a folate-linked liposomal doxorubicin improves the efficacy of doxorubicin.

Micro-MRI in preclinical therapy development

Micro-MRI is widely applied in the preclinical development of new cytotoxic or target-specific therapies for many types of cancers. It also helps in tracking tumor response in the same animal, thereby helping reduce the number of animals used for a study. However, MRI can be an expensive option for small labs conducting preclinical studies as the equipment cost is very high.

Preclinical to Clinical MRI

References

  1. https://birc.au.dk/
  2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3687654/

Further Reading

Last Updated: Jul 19, 2023

Susha Cheriyedath

Written by

Susha Cheriyedath

Susha is a scientific communication professional holding a Master's degree in Biochemistry, with expertise in Microbiology, Physiology, Biotechnology, and Nutrition. After a two-year tenure as a lecturer from 2000 to 2002, where she mentored undergraduates studying Biochemistry, she transitioned into editorial roles within scientific publishing. She has accumulated nearly two decades of experience in medical communication, assuming diverse roles in research, writing, editing, and editorial management.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Cheriyedath, Susha. (2023, July 19). Micro-MRI in Cancer Research. News-Medical. Retrieved on November 11, 2024 from https://www.news-medical.net/life-sciences/Micro-MRI-in-Cancer-Research.aspx.

  • MLA

    Cheriyedath, Susha. "Micro-MRI in Cancer Research". News-Medical. 11 November 2024. <https://www.news-medical.net/life-sciences/Micro-MRI-in-Cancer-Research.aspx>.

  • Chicago

    Cheriyedath, Susha. "Micro-MRI in Cancer Research". News-Medical. https://www.news-medical.net/life-sciences/Micro-MRI-in-Cancer-Research.aspx. (accessed November 11, 2024).

  • Harvard

    Cheriyedath, Susha. 2023. Micro-MRI in Cancer Research. News-Medical, viewed 11 November 2024, https://www.news-medical.net/life-sciences/Micro-MRI-in-Cancer-Research.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.