LC-NMR Applications

LC-NMR combines two techniques - liquid chromatography (LC) and nuclear magnetic resonance (NMR). It involves a HPLC separation followed by the detection of separated components by UV or other methods and ultimately NMR analysis. LC-NMR is a powerful analytical tool used to resolve complex mixtures. The coupling of LC separation with NMR characterization has been employed in a wide range of applications.

LC-NMR is also combined with other techniques such as two-dimensional NMR measurements (LC-2D NMR), mass spectroscopy or MS (LC-NMR/MS) and solid phase extraction or SPE (LC-SPE-NMR) to give rise to a whole new range of separation and characterization applications that have a high sensitivity. LC-NMR/MS provides insights into the mass and fragmentation of different components in a sample while the LC-SPE-NMR system helps in full structural elucidation of the sample components.

Applications of LC-NMR

The LC-NMR technique and its variants are widely used in the following applications:

  • Analysis of crude extracts of natural products and plant-derived compounds - the technique is optimized for rapid identification of potential drug candidates in plant products.
  • Detection of bulk drug impurities during drug-stability tests - the data from LC-NMR/MS allows full characterization of all impurities present in the drug.
  • Analysis of unstable compounds or compounds formed in situ that cannot be detected or isolated using other techniques.
  • Studying drug metabolism - analysis of biofluids such as plasma or urine. Tracers such as 19F are linked to drugs and they can be tracked clearly by NMR.
  • Analysis of ring-fused and heterocyclic compounds that have a small number of protons - the LC-2D-NMR technique provides carbon shift and bonding information for these compounds, which is very useful for analysis of their structure.
  • Composition profiling to analyze the content and structure of components in a chemical mixture, thus providing valuable insights for the development of a manufacturing process in the chemical industry.
  • Studying polymers – the high resolution of LC-NMR is ideal for analysis of the microstructures in synthetic polymers and biopolymers including proteins.
  • Studying uncharacterized, complex, non-living natural organic matter (NOM) present in the atmosphere, oceans, soil and sediments. LC-NMR and LC-SPE-NMR have been used to study dissolved NOM from freshwater and alkaline soil extracts for the separation and characterization of components in the complex mixture.
  • Metabolomics to determine disease states using body fluids analysis.

Summary

The LC-NMR technique has matured over the years with respect to both sensitivity and practicality. This is due to advancements such as the production of high-sensitivity probes and powerful field magnets, development of new techniques that enhance the sensitivity, and automatic measurement software.

Advanced LC-NMR with such built in features are commercially available for a number of applications. LC-NMR systems from Bruker offer automated analysis of unstable and sensitive compounds. Its LC-SPE-NMR systems provide a significant increase in the signal-to-noise ratio of the NMR spectra obtained, making them ideal for structural analysis in experiments involving low concentrated impurities. The trapping (elution) process on the SPE cartridge provides a 100% increase in sensitivity as compared to LC-NMR.

Coupling LC-NMR with other analytical techniques such as MS has provided novel insights into the structure of different compounds. The use of spectral databases and software for structure analysis will help speed up structure elucidation. Developing the technical know-how and the continuous sensitivity improvement efforts will maximize the applications of LC-NMR in research and development.

References

Further Reading

Last Updated: Jul 19, 2023

Susha Cheriyedath

Written by

Susha Cheriyedath

Susha is a scientific communication professional holding a Master's degree in Biochemistry, with expertise in Microbiology, Physiology, Biotechnology, and Nutrition. After a two-year tenure as a lecturer from 2000 to 2002, where she mentored undergraduates studying Biochemistry, she transitioned into editorial roles within scientific publishing. She has accumulated nearly two decades of experience in medical communication, assuming diverse roles in research, writing, editing, and editorial management.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Cheriyedath, Susha. (2023, July 19). LC-NMR Applications. News-Medical. Retrieved on November 11, 2024 from https://www.news-medical.net/life-sciences/LC-NMR-Applications.aspx.

  • MLA

    Cheriyedath, Susha. "LC-NMR Applications". News-Medical. 11 November 2024. <https://www.news-medical.net/life-sciences/LC-NMR-Applications.aspx>.

  • Chicago

    Cheriyedath, Susha. "LC-NMR Applications". News-Medical. https://www.news-medical.net/life-sciences/LC-NMR-Applications.aspx. (accessed November 11, 2024).

  • Harvard

    Cheriyedath, Susha. 2023. LC-NMR Applications. News-Medical, viewed 11 November 2024, https://www.news-medical.net/life-sciences/LC-NMR-Applications.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.

You might also like...
Researchers develop the first polymer-based therapeutic for Huntington’s disease