Applications of Yeast Two-Hybrid Screening

The yeast two-hybrid screening system is a technique used for identifying molecular interactions and characterizing interaction pairs.

Credit: Tobias Arhelger/Shutterstock.com

The two-hybrid screening method was originally based on the DNA binding domain of the transcription factor GAL4 from the yeast Saccharomyces cerevisiae, which is incapable of activating transcription unless it is associated with an activating domain.

The two domains must pair to begin DNA transcription. Two-hybrid screening may be used to study protein-protein interactions, DNA-DNA interactions, or protein-DNA interactions.

How it works

The method was invented by Stanley Fields and Ok-Kyu Song in 1989. They designed an assay to detect protein-protein interactions using GAL4 to activate transcription of enzymes related to galactose utilization.

Two-hybrid screening can be carried out as a benchtop assay, a high-throughput screen, or a library screen.

The two-hybrid system has the advantage that it is an in vivo technique, meaning it is carried out in a live yeast cell. This offers more faithful representation of eukaryotic cellular biology. Another advantage is that it can track weak or transient interactions, because the reporter gene strategy results in an amplification. On the other hand, this causes  a higher number of false positives.

Applications

The two-hybrid system has been used to study molecular interactions in all parts of the cell, including the membrane, mitochondria, cytoplasm, and nucleus. It also has applications in many different species of plants, animals, and microorganisms.

Interactome mapping:

  • Two-hybrid assays have been used not only to study individual molecular interactions, but to reveal larger scale behaviors and properties of cells. For example, in one recent study, two-hybrid technology was used to study cell polarity. Cell polarity is the asymmetric distribution of components and functions in a cell.
  • Polarity is critical in the development of different cell types through asymmetric cell divisions. It is established through a network of protein interactions that is not yet well understood.
  • A map of all interactions in a cell or organism is known as an interactome. Scientists mapped the polarity interactome using the two-hybrid system to generate proteome-wide interactome maps that significantly advanced understanding of cellular polarity.

Host-parasite interactions:

  • Another novel application makes use of the two-hybrid system to screen and identify host proteins interacting with Toxoplasma gondii Rhoptry Protein ROP16.
  • Toxoplasma gondii is a parasite that is able to manipulate its host for survival. It secretes the ROP16 protein into the host cell, which then activates host STAT signaling pathway.
  • The study sought to characterize other host protein interactions with ROP16, and successfully identified two previously unknown host protein interactions in mice.

Post translational modification in Arabidopsis:

  • Small ubiquitin-like modifier (SUMO) proteins carry out post-translational modifications of proteins involved in numerous cellular processes.
  • In a study involving Arabidopsis – a plant related to cabbage and mustard – researchers screened a yeast two-hybrid library of transcription factors that interact with the cell’s SUMO machinery. They identified 76 interactors from various transcription factor families.

Two-hybrid screening is a widely used and powerful tool for identifying and characterizing molecular interactions. It can be used at a small scale for studies of individual proteins, or on a larger scale for mapping hundreds of interactions or even an entire interactome. Its applications are diverse among different branches of life science and biomedical fields.

Y2H Screening

Credit: iGEM 2014 Team Goettingen: On the road to Boston/Youtube.com

Further Reading

Last Updated: Feb 26, 2019

Dr. Catherine Shaffer

Written by

Dr. Catherine Shaffer

Catherine Shaffer is a freelance science and health writer from Michigan. She has written for a wide variety of trade and consumer publications on life sciences topics, particularly in the area of drug discovery and development. She holds a Ph.D. in Biological Chemistry and began her career as a laboratory researcher before transitioning to science writing. She also writes and publishes fiction, and in her free time enjoys yoga, biking, and taking care of her pets.

Citations

Please use one of the following formats to cite this article in your essay, paper or report:

  • APA

    Shaffer, Catherine. (2019, February 26). Applications of Yeast Two-Hybrid Screening. News-Medical. Retrieved on November 11, 2024 from https://www.news-medical.net/life-sciences/Applications-of-Two-Hybrid-Screening.aspx.

  • MLA

    Shaffer, Catherine. "Applications of Yeast Two-Hybrid Screening". News-Medical. 11 November 2024. <https://www.news-medical.net/life-sciences/Applications-of-Two-Hybrid-Screening.aspx>.

  • Chicago

    Shaffer, Catherine. "Applications of Yeast Two-Hybrid Screening". News-Medical. https://www.news-medical.net/life-sciences/Applications-of-Two-Hybrid-Screening.aspx. (accessed November 11, 2024).

  • Harvard

    Shaffer, Catherine. 2019. Applications of Yeast Two-Hybrid Screening. News-Medical, viewed 11 November 2024, https://www.news-medical.net/life-sciences/Applications-of-Two-Hybrid-Screening.aspx.

Comments

The opinions expressed here are the views of the writer and do not necessarily reflect the views and opinions of News Medical.
Post a new comment
Post

While we only use edited and approved content for Azthena answers, it may on occasions provide incorrect responses. Please confirm any data provided with the related suppliers or authors. We do not provide medical advice, if you search for medical information you must always consult a medical professional before acting on any information provided.

Your questions, but not your email details will be shared with OpenAI and retained for 30 days in accordance with their privacy principles.

Please do not ask questions that use sensitive or confidential information.

Read the full Terms & Conditions.